• Login
    View Item 
    •   NI4OS Repository Home
    • VI-SEEM Life Sciences
    • D3R
    • View Item
    •   NI4OS Repository Home
    • VI-SEEM Life Sciences
    • D3R
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computer-aided drug design to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    Thumbnail
    View/Open
    free-energy-predictions.tar (24.92Gb)
    pose_prediction.tar (7.437Gb)
    D3R-Athanasiou.et.al.2017.pdf (31.18Mb)
    zcournia_D3R_supplementary.pdf (35.40Mb)
    Author
    Athanasiou, Christina
    Vasilakaki, Sofia
    Dellis, Dimitris
    Cournia, Zoe
    Metadata
    Show full item record
    Abstract
    Computer-aided drug design has become an integral part of drug discovery and development efforts in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The Drug Design Data Resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding pose of the native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed Free Energy Perturbation (FEP) calculations coupled with Molecular Dynamics (MD) simulations. FEP calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also showed that FEP calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of sufficiently high quality are available.
    URI
    http://hdl.handle.net/21.15102/VISEEM-277
    Collections
    • D3R

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Policy | Terms of Use | Cookie Policy
    Theme by 
    @mire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback | Privacy Policy | Terms of Use | Cookie Policy
    Theme by 
    @mire NV